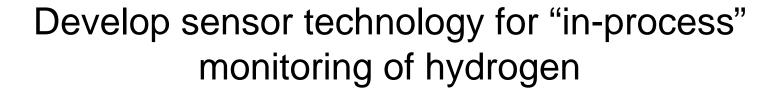


Solid State Sensors for Monitoring Hydrogen in IOF Process Streams

Anthony McDaniel, D. Morrison (SNL)

M. Horn, R. Jayaraman, R. Messier, R. McGrath (PSU)

F. Schweighardt (APCI)


S. Huenemeier (DCHT)

- Measuring H₂ content of process streams critical to IOFs:
 - Glass
 - surface defects in tin float baths
 - Chemicals
 - ammonia and polyolefin manufacture, batch hydrogenation
 - Petroleum
 - hydrogen recovery / cogeneration for oil refining
- Non-IOF applications
 - H₂ generation, storage, utilization (fuel cells)
- Aggressive environments
 - Contain reactive gases and/or liquids
 - Elevated temperatures and/or pressures

Research and development focused on hydrogen cogeneration

- Air Products and Chemicals, Inc. HyCO process
 - Reforming of refinery off-gas (hydrocarbons)
 - Produce 1.3 billion SCF per day H₂ in the U.S.
- Quantify H₂ content in refinery off-gas feedstock & in-process

streams

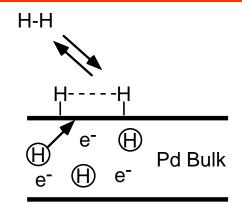
- Maximize plant performance
 - bypass H₂-rich feed streams
 - minimize gas venting
- Reduce power consumption
 - optimize steam-to-carbon ratio in reformer and shift reactors
- Overall goal
 - On-line hydrogen analysis (0.5-100% H₂, <5 sec)

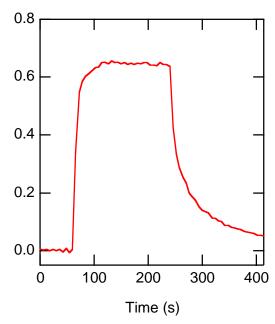
REFORMING

 $CH_4 + H_20 = 3H_2 + CO$

CO + H₂0 - H₂ + CO₂

Background on H₂ chemical-resistor technology


- Thin ohmic film of transition metal alloy (Pd, Ni)
- Principle of operation
 - Surface chemistry moderates response
 - dissociative adsorption of H₂
 - Protons diffuse into bulk altering I-V characteristics
 - increase electrical resistance
 - Adsorption isotherm obeys
 Sievert's Law


$$\ln \sqrt{P_{H_2}} = \ln \left(K \cdot \frac{n}{1-n} \right); \quad n = \frac{H}{Pd}; \quad K = \exp \left[-\frac{\Delta H^o}{2RT} + \frac{\Delta S^o}{2R} \right]$$

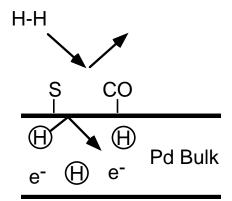
AR/R (%)

S&C FY02

Technical risks/innovation

- Technical risks associated with industrial application
 - Poisoning of catalytic surface by
 CO and sulfur (H₂S, RR'S, RHS)
 - α-β phase transition at large H₂ pressure

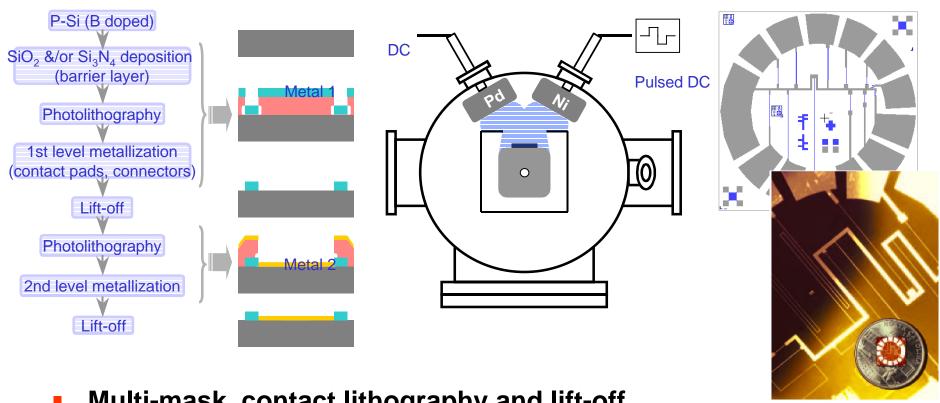
- Application of selectively permeable membranes
- Optimization of alloy composition
- At present GC and GC/MS used to measure H₂ in process streams
 - Large, complex, costly analytical instruments
- H₂-chemresistor is simple, inexpensive, and amenable to distributed sensing applications



Task performance

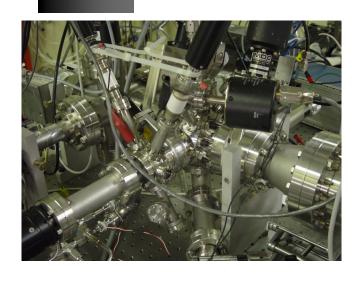
Past Technical Milestones

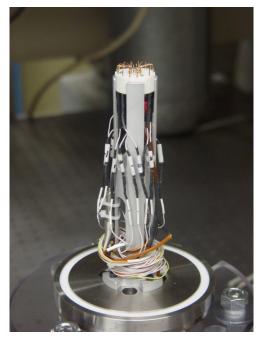
Milestone		Due Date	Completion Date	Comments
PSU	Fabricate H ₂ -chemresistor test structures; vary alloy composition, incorporate membranes	10/01 3/02-1/03	9/01	ongoing work
SNL	Construct laboratory testing facility	11/00 1/02	1/01 4/02	flow cell high-pressure cell
SNL	Develop surface chemistry models for predicting sensor performance	10/01	10/01	further modeling efforts abandoned
SNL	Characterize sensors, determine failure modes, evaluate design changes	1/03		ongoing work
DCHT	Provide equipment for field tests	7/00 7/02	7/00	
APCI	Upgrade and prepare field unit for pilot plant testing	2/02		in progress
APCI	Pilot plant testing	5/02 7/02		in progress

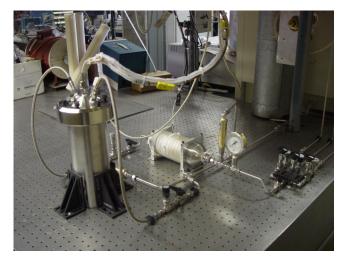


Fabrication of H₂-chemresistor test structures

- Multi-mask, contact lithography and lift-off
- DC and pulsed DC magnetron sputtering of metals
 - Precise control of composition, morphology, and stress



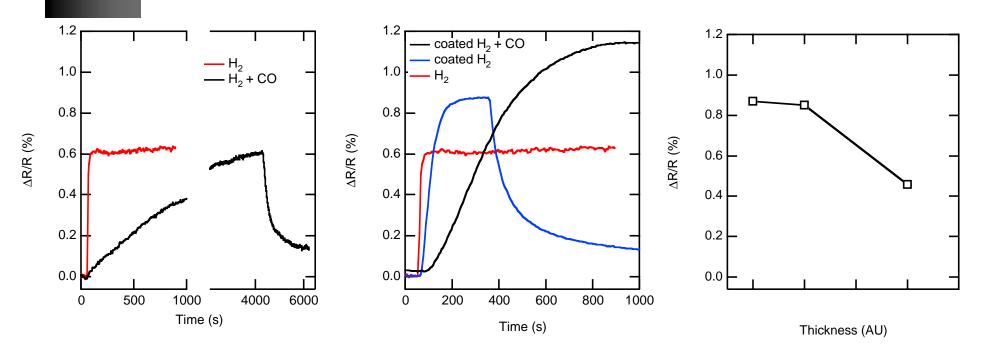




Laboratory testing facilities

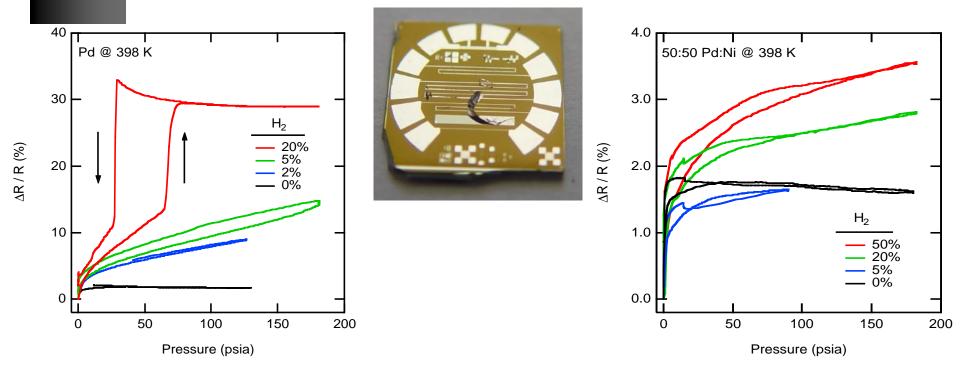
Flow cell
 flexible gas manifold
 integrated MS
 low pressure
 dynamic studies

High-pressure cell"Parr Bomb"0-2000 psia



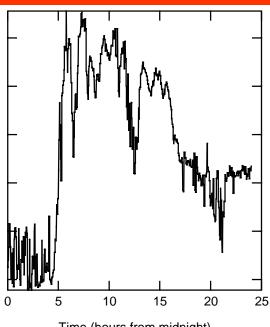
Effects of CO and permeable membranes

- Surface chemistry modified by co-adsorbates
 - CO slows sensor response to H₂, but does not attenuate signal
- Application of permeable membrane mitigates effect of CO
 - Need to optimize coating material and film thickness



High pressure failure mode and effects of alloy

- 13 psia H₂ induces α-β phase transition in Pd thin film
 - Sensor does not respond predictably in two-phase region
 - Lattice expansion delaminates film
- Pd/Ni alloy extends operation to higher H₂ partial pressures



Field testing

- Air Products & Chemicals
 - HyCO plant Wilmington, CA
 - H₂ content of refinery feed gas
 - On-line sampling, DCH chip

Time (hours from midnight)

Commercialization

- Proposed future plant tests
 - On-line sampling with current field unit
 - DCH chips, upgraded electronics
 - real-time pressure compensation
 - Tennessee Eastman-Chemicals
 - chemical batch hydrogenation
 - Air Products & Chemicals
 - HyCO and ammonia plant
 - Exxon-Mobil (Tentative)
 - Dow (Tentative)
- Commercialization partner DCH Technologies
 - Identified market opportunities and remain interested in technology

Performance merits for H₂ cogeneration

- Improving energy efficiency for hydrogen cogeneration
 - Measure H₂ in refinery feed and process streams
 - Redirect H₂-rich feed gas
 - Optimize steam-to-carbon ratio
- Redirecting H₂ rich refinery feed
 - Estimated improvement in efficiency is 0.4% per plant
 - assume 6 units installed
 - Save 1.24 BTU/SCF H₂ @ 0.5-1x10⁶ SCF H₂/day/plant
 - Save 2.2x10⁸ BTU/day in U.S. facilities
- Plant optimization would yield even greater energy savings!

Performance merits for hydrogenation plant

- Batch hydrogenation
 - Monitor H₂ as a function of time
 - 1% improvement in sustained catalytic efficiency
 - Extend life of catalytic bed by 0.5 years
- More than 400 hydrogenation facilities in U.S.
 - Save \$1.5-2.5x10⁸/year @ \$3.0-5.0x10⁵/year/plant
 - Extending intervals between catalyst replacement could save \$2.4x10⁷/year
- Mass spectrometer installed cost \$3.0x10⁵/unit
- H₂ Solid state sensor installed cost \$1.5x10⁴/unit
 - Chemresistor chips are a small fraction of the installed cost!

Path forward

Next steps

- Identify optimal alloy composition for various applications
 - Refinery feed (100 psig), reformer, PSA (300 psig), purified plant H₂ (100-2000 psig)
- Identify optimal coating material and thickness
 - Mitigate the effects of contaminants, cross sensitivity to other matrix gases
- Develop fabrication protocols for chip production on 4 and 6 inch wafers
- Prototype and test advanced sensing elements
 - coatings, alloys, on-chip pressure compensation
- Transfer technology to commercial partner

